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Abstract 

Weakly anisotropic steady spectra are found for both inverse and direct cascades in two-dimensional turbulence of an 
incompressible fluid. The degree of ardsotropy is shown to increase for both speelra: as (kL)-2/3 upseales and as (kA) 2 
downseales from the pump. A weakly anisotropic intermediate-scale pumping may thus produce a substantially anisotropic 
turbulence in the inertial intervals of scales. 

I. Introduction 

Turbulence theory is based on the assumption of local isotropy put forward by Taylor [ 1 ]. This assumption 
allows one to obtain universal turbulence spectra as one-parameter functions. The respective flux of the integral 
of motion plays the role of the spectrum parameter. Isotropy hypothesis is confirmed experimentally [2] as 
well as theoretically [3-5] for a small-scale turbulence produced by a quite arbitrary large-scale pump in 
three dimensions. Direct energy cascade is getting more isotropic as it proceeds downscales. Two-dimensional 
turbulence, though, admits an inverse energy cascade while a direct cascade is that of vorticity [6]. The subject 
of the present paper is structural stability of both direct and inverse cascades in two dimensions with respect to 
a weak anisotropy of the pumping. 

Here we describe the properties of weakly anisotropic steady spectra of 2d turbulence and show that they 
may get more anisotropic while passing into the inertial intervals. We find analytically small steady anisotropic 
additions (neutrally stable modes) to the isotropic solutions in question. The powerful method for finding 
those modes goes back to Poincare. The number of such modes should be equal to the number of independent 
integrals of motion. Any mode in the linear approximation can be found by differentiating the general solution 
with respect to the value of a certain integral. The only difference of the case in question is that, instead of 
the integral, one should use its flux. That method was successfully applied in the theory of wave turbulence 
[7,8]. In order to apply it to the problem under consideration, one should find additional integrals of motion 
that correspond to those modes. To do this, we shall write the Euler equation in a certain symmetric form. 
Such a symmetry is well-hidden in terms of velocities and it is revealed in terms of canonical Clebsch variables 
[9,10]. This representation allows one to describe the turbulence of an incompressible fluid as a particular case 
of turbulence in a Hamiltonian system of quasi-particles and to use some analytical technique invented in the 
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theory of wave turbulence [ 8 ]. The symmetry corresponds to the momentum of the quasi-particles that is the 
motion invariant whose flux is transported by the anisotropic neutrally stable modes to be found below. 

The possibility to get consistent results for incompressible fluid turbulence, where no small parameter is 
initially at hand, arises by the following way: We assume isotropic turbulent distribution to be given and use 
only its general properties like scale invariance with the exponents in some interval. The analysis of anisotropic 
corrections can be made by using the degree of anisotropy as a small parameter. Another small parameter 
(the ratio of scales that interact) appears at the locality analysis. We thus can escape using uncontrollable 
approximations. 

It is worth emphasizing that the modes are neutrally stable with respect to time. Though, being set up, those 
modes provide for the kind of a structural (i.e. with respect to boundary condition) instability of the spectrum if 
the relative anisotropy would grow while the modes expand into the respective inertial intervals. The direction 
of the mode propagation is governed by the sign of the momentum flux. We cannot yet find the signs of 
the momentum fluxes neither we can solve the initial value problem to find which of our solutions is really 
established. To predict the direction of an anisotropy growth, further studies (numerical and experimental) 
are necessary. The present state of the theory cannot predict whether the momentum flux flows downscales 
providing for a structural instability of the direct primary cascade (DPC) or upscales as the inverse primary 
cascade (IPC) or in both directions. The analysis of the present data [11] prompts that anisotropy most 
probably propagates upscales. If  it was so, then the instability predicted allows one to describe the initial stage 
of the decay of initially almost isotropic turbulence, it demonstrates the onset of the self-organization process 
which eventually leads to a large-scale dipole vortex flow [ 12]. This shows also that the steady large-scale 
spectrum of two-dimensional turbulence may have an exponent different from 5/3. The instability described 
below leads not only to the anisotropy growth but also to a somewhat steeper spectrum since the anisotropic 
part of the energy spectrum behaves as k -7/3. This may be relevant to the steepening of 2d spectrum at large 
scales observed in numerics [ 13] and in the atmosphere [ 14] all the more that the latter data show also a 
substantial nonisotropy at large scales. 

Another peculiarity of the problem under consideration is that odd angular harmonics of the energy spectrum 
are absent in the reference frame moving with a mean flow. Besides, all even harmonics in the inertial interval 
appear as corrections directly caused by respective angular harmonics of the damping and pumping. 

The outline of the paper is as follows. We recall some basic properties of Hamiltonian approach in the Clebsch 
variables in Section 2.1, then we construct weak anisotropic corrections to both inverse and direct isotropic 
cascades at first by dimensional estimations in Section 2.2 and then by means of conformal transformations in 
Section 2.3. The behavior of different angular harmonics as it is dictated by the external pumping and damping 
is discussed in Section 2.4. Universal anisotropic energy spectra are obtained in Section 2.5. The final discussion 
in Section 2.6 of the question "Do anisotropic solutions set upT' closes Section 2. In Appendix A we briefly 
enumerate properties of the diagonal and Quasi-Lagrangian diagram techniques in Clebsch variables. This is 
then applied in Appendix B to restore the angular harmonics of propagators from the angular harmonics of 
the fourth order correlators obtaining in Section 2.2, Section 2.3. The complete convergence investigation for 
angular harmonics of the collision integral is given in Appendix B. 
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2. Clebsch variables and momentum conservation 

2.1. Hamiltonian approach in the Clebsch variables 

The Euler equation of motion for incompressible two-dimensional fluid could be written for the vorficity 
12(x , y , t ) ,  

an aC aa aC, ao 
- - +  =0 .  (1) 
ot Ox Oy Oy Ox 

Here the stream function is ~k = -o°7-//&o where 7-/= _ l  f ~M2dxdy  is the energy of the fluid. 
In two-dimensional geometry, it is always possible to represent the vorticity lines as an intersection of the 

level surfaces of two scalar fields a(x,  y, t) and/z(x,  y, t) [9]: 

= [Va, V ~ ] .  

Square brackets denote a vector product. These A and/~ are the Clebsch canonical variables, which make it 
possible to represent the Euler equation (1) in canonical Hamiltonian form [9,15-18] 

aa ~ a~ 
a t  = Olz ' at 6 a  " ( 2 )  

The general theory of turbulence in Hamiltonian systems is developed in terms of normal canonical variables 
that reveal all the conservation laws governing turbulence cascade [8]. Following [ 19,20] let us go over from 
the pair of the real variables a ( x , t )  and I z ( x , t )  to the complex ones a ( x , t )  and a * ( x , t ) ,  

v ~ a ( x ,  y, t) = a ( x ,  y, t) + i lz(x,  y, t) . 

Passing to k-representation, we express the vorticity via these normal variables: 

£1k = i f tk,, k z ] a i a ~ 8 ( k  - kl  + k2) dZkldZk2 • 

Eqs. (2) have the following form in these variables: 

.Oa(k , t )  b'7-I 
z Ot 6 a * ( k , t )  ' (3) 

7-[ = I f T(  k l ,  k2; k3, k4)a~a~a3a48( kl  + k2 - k3 - k4)d2kld2k2d2k3d2k4 , (4) 

T ( k l ,  k2; k3, k4) = (1~13 • I]/24 + 1~14" 1~23), (5) 

1 
I~i j = dJ(ki, k j )  = 2(2qr)3/2 (k i  + kj  - (ki  - k j )  I ki  - k j  12 )' (6) 

if ki v ~ k), otherwise qti/= 0 in the reference system where a mean flow is absent. In (4) aj = a ( k j ,  t ) .  Fluid 
velocity in the k-representation is expressed as follows: 

vk = - i  f c,12aTa28(k + k l  - -  k2)d2kld2k2 • (7) 

The velocity is a quadratic function of Clebsch variables. The main subject of interest for us is the energy 
spectrum which is expressed through the second correlation function of velocities and the fourth correlation 
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function of Clebsch variables. Our main goal is to find the fourth correlation function (ala2aaa4) = J12348(kl + 
k2 - k3 - k4) that provides for a steady turbulence. 

Let us mention an enormous freedom to choose different sets of Clebsch variables. By choosing independent 
A and/z  we actually doubled the variables since our problem should be completely determined by one scalar 
function (vorticity or any component of the velocity). We shall not dwell upon the ambiguity of the solution 
in Clebsch variables, our aim is to obtain finally the solution in terms of velocity without describing the whole 
class of Clebsch fields that is projected into this solution. 

2.2. Conservation law and phenomenology of turbulence spectra 

It is well known that the Euler equation (1) conserves kinetic energy E = f v2d2x, m o m e n t u m  P = 
f v(x,  t)d2x (which is zero in the reference system moving with the mean flow), and an arbitrary functional 
of the vorticity f F(12) d2x, in particular, enstrophy H = f ~d2x.  According to Fjortoft's theorem, it is the flux 
of the energy that should determine the inverse cascade while the vorticity flux determines the small-scale part 
of isotropic turbulence (see e.g. [21] ). To study anisotropic turbulence, one needs an integral of motion that is 
a vector or a tensor. Such an integral follows from the spatial homogeneity of the problem under consideration: 

= f kn(k,  t)d2k. (8) I I  

It is the total momentum of the quasi-particles with "occupation numbers" 

n(k, t )8(k - k') - (a(k, t)a*(k', t ) ) .  (9) 

Conservation of H formally follows from the presence of the 8-function in (5) provided by spatial homogeneity 
of the problem. Note that the very possibility of the ensemble of Clebsch quasi-particles having a nonzero 
momentum is due to the possibility that n(k) ~ /n( -k ) .  These quasi-particles are thus similar to usual waves 
which could have nonzero momentum with respect to a medium that is in rest. What is important is that neither 
the velocity field nor the vorticity one possesses this property: because of the identity v(k) = v*( -k ) ,  the 
double correlator of the velocity field is always even. Obviously, this identity follows from the fact that any 
flow of an incompressible fluid is completely determined by the single real quantity D(x,  t). This means the 
absence of waves propagating in an incompressible fluid since any wave is described by two real variables (or 
one complex variable). 

The existence of the additional integral of motion follows from the Kelvin theorem which is implied in 
the Clebsch variables. The value of the integral has no direct physical meaning since one can find different 
configurations of the Clebsch field having different values of the momentum H but corresponding to the same 
velocity field. For example, changing k ---} - k  for ak one gets H --+ - H  while the velocity field does not 
change. Still, the symmetry that corresponds to this integral allows us to obtain new steady anisotropic spectra 
that can be expressed in terms of velocities. 

Knowledge of motion invariants allows one to suggest phenomenologically the expressions for the respective 
correlation functions. Energy is the Hamiltonian in the Clebsch variables so its density is expressed via 
the fourth-order correlator J1234. The energy flux can thus be expressed by the usual means [20] via the 
simultaneous six-order correlator J123456. By requiring the flux to be constant one can get the scaling exponent 
of j(6) which is Y6 = -14 ,  so that j(6) oc Pk -14 with P being the energy flux. Assuming simple scaling 
Yn = An + B, we obtain Yn = (8n - 6) /3 .  The double correlator is thus nK(k) cx Pl/3k-Z°/3 which was first 
obtained in [19]. The fourth correlator J(K 4) cX p2/3k-26/3 gives the energy density EK(k) oc P2/3k-5/3 that can 
be easily recognized as the Kolmogorov 41 spectrum [22,23]. A similar procedure can be employed for the 
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enstrophy cascade with the flux W that also can be expressed via the fourth-order correlator J1234. This gives 
Yn = 3n - 2, nw(k) cx wl/3k-4  and Ew(k) c< W2/3k-3. But this vorticity cascade turns out to be nonlocal and 
the logarithmic correction is required: Ew(k) cc k -3 ln- l /3(kL)  [6,24]. 

One may argue that the way to obtain the spectra in terms of Clebsch variables is not better than the 
analogous speculations in terms of velocities. However, further analysis of the anisotropic parts of the spectra 
is much easier to do in Clebsch variables where the momentum integral is present explicitly. 

If the pumping is non-isotropic then it generates momentum of the Clebsch quasi-particles. If the interaction 
of the quasi-particles is local in k-space (see below), then there should be the flux of momentum in the inertial 
intervals of scales. Since we have two inertial intervals, then the question arises which direction the momentum 
flux flows: downscales or upscales (or both) in each (energy and enstrophy) inertial interval. According to 
the revised universality concept [26], we assume the spectra in the inertial intervals to have a universal form 
defined by two values of the fluxes: P and R the momentum flux in the large-scale inertial interval, and W and 
R in the small-scale inertial interval. From the dimensional analysis, the two-flux spectra can be written as 

nK( k, P, R)  = ,)tlpl/3k-l°/3 f l ( (1 )  , 

nw(k, W, R) = , ) t2Wk-4f2((2) , 

(lOa). 

(10b) 

where the dimensionless ratios of the fluxes are 

( Rk ) Tkkunk ( Rk  ) Tatknkk 2 
( i =  , ( 2=  (II)  

P W 

It is understandably difficult to determine the function f ( ( )  for all ( (hitherto, the two-flux spectrum has been 
explicitly found only for acoustic turbulence [27] ). We can, nevertheless, find the form of the stationary spectra 
in a weakly anisotropic limits when (1,2 << I. Expanding the functions f l  ((1), f2((2) at (1.2 << I, we get a 
correction to the pair correlator in the form of the first angular harmonics 

8n~:(k) 
O( ( l  O( ( kL ) - l /3  cosOk , (12a) 

nK(k) 
8nw(k) 

~ (2 cx kAcosOt , (12b) 
nw(k) 

where L is the energy containing scale for IPC and A is the dissipation scale for DPC. L (or A) dependence of 
the anisotropic correction (12a) (or (12b) ) stems from the corresponding dependence of the momentum flux. 
The formula (12a) is similar to that first proposed by Kuznetsov and L'vov [29] for  the three-dimensional 
turbulence. In the same way one can write a correction to an arbitrary simultaneous correlator: tSJ/J oc (.  For 
example, the fourth-order correlation functions are mitten as follows: 

8JIK234 (2( k l  1/3 COS 01111(,234 "~- k2 1/3 cos 02/21(134 d- k3 1/3 cos 0313K~24 -~- k4 1/3 cos 0414K,~23 , (13a) 

t~JW34 OC kl cos 01/1W,234 dr- k2 COS 0212W134 -I- k3 COS 03 I~,1"24 + k4 COS 0414W~23, (13b)  

where I~4'~ v have the same scaling properties as j ~ v  and are symmetric with respect to the last three arguments. 
In the next subsection, one of those small anisotropic corrections (13a) is shown to be an exact steady solution 
of the equation for the correlation functions. 

The formal language we used to describe small anisotropic corrections (12) may be clarified in a more 
physical way without any references to the Clebsch variables. Indeed, the dimensionless ratios (12) reflect a 
balance between an anisotropy of the velocity shear and nonlinear mixing that tends to restore isotropy [28] : 
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the ratio of the characteristic time of k-eddy's approach to anisotropy due to an external shear to its (k-eddy's) 
turnover time should not depend on k. 

Let us also note that the correction (12b) is not the only anisotropic correction to the isotropic direct cascade. 
Indeed, if we consider a shear flow with some anisotropic velocity profile along the z-axis U = f d2r(dv/Oz ) r = 
const then another dimensionless ratio (instead of s¢2) may be suggested 

UTkkkknk k2 ~3 = 
W 

It gives for the corresponding anisotropic correction to the pair correlator the same scaling as the isotropic 
spectrum nw(k) has. Therefore, that anisotropic correction turns out to be logarithmically nonlocai. Further 
investigations are necessary to find suitable logarithmic dependence (probably it may be obtained by some 
generalization of the method used for the isotropic vorticity cascade [24] ). Yet in this paper we address the 
spectrum (12b) with an anisotropic pumping of the momentum flux R only. 

2.3. Conformal transformation and exact stationary solution 

Multiplying (3) by a* (k, t) and averaging, we obtain the equation 

an( k , t )  
= St(k, t ) ,  (14) 

at 

St(k, t) =Im f Tk123Jm3~(k + k~ - k2 - k3)d2kld2k2d2k3, (15) 

that governs the time evolution of the pair correlator. This equation is a straightforward consequence of the 
Euler equation and it is the main subject of our analysis. We shall find the general (anisotropic) form of the 
fourth correlation function that turns rhs into zero providing for a steady turbulence. 

We assume that (15) is zero for some J = Jo (J0 = J~: or Jw) and consider J = J0 + 8J. To show that 
the rhs of (15) is zero for some 8J ~ cos 0 (neutrally stable perturbation), we divide that integral into four 
identical parts, and then make in three of them the transformations that consist of the conformal dilatations 
invented independently by Kraichnan [30] and Zakharov [31] and rotations in k-space suggested by Kats and 
Kontorovich [7]. For the first term this transformation G1 looks as follows (here initial integration variables 
are temporarily denoted by ql, q2 and q3 so that k + ql = q2 + q3): 

G1: q l = ~ t t k l ,  q2=Glk3 ,  q 3 = G l k 2 .  (16) 

The operation G1 is determined by the condition 1~1kl = k and it transforms the quadrangle k + kl = k2 + k3 
from Tk123 into a similar quadrangle k + ql = q2 + q3. The transformation thus relabels kl and k and dilates all 
arguments of T and 8J with a factor A1 = k/kl .  Similar transformations 

=  2k3, q2 =  k2, q3 -- ( 2k2 = k ) ,  

q, = 3k2, =  3k,, q, -- = k ) ,  

should be done in the second and third terms. The scattering amplitude (5) is a homogeneous function with 
the index 2, i.e., 

T(Akl ,  Ak2; Ak3, Ak4) = A2T(kl, k2; k3, k4) • 
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Let the correction to the fourth correlator 8J  to be also a homogeneous function with its index being a. The 
transformation Jacobian gives A/6 so in all the transformed terms acquire factors A~ +s. Therefore, after the 
transformations, the Eq. (15) gets the following form: 

an(k, t) 
~ : d 2 k l d 2 k 2 d 2 k 3 8 ( k  + ki - k2 - k3)Tkl,23(lk,123 + Ii k23 + 12 Ik3 + Ik,123) 

at ' " 

× (k -a-s  cos 0t + k~ -a-s cos 01 - k2 a-s cos 02 - k3 a-s cos 03) . (17) 

One can see that the rhs can be made identically equal to zero by virtue of the 8-function if  a = -9 .  It is 
exactly our case both for the inverse anisotropy cascade (13a) with J0 = JK and for the direct one (13b) with 
J0 = Jw. Note that transformations like (16) interchange zero and infinity of the integration domain in the 
k-space. Therefore, they are possible for convergent integrals only. Using the technique introduced in [ 10] for 
expressing the asymptotics of high-order correlators via the second one, one can show (see Appendix C) that 
integral (15) converges with the correlator (13a) and it lies exactly on the UV convergence boundary for the 
correlator (13b). The perturbation (13a) is thus a steady anisotropic solution. Let us emphasize that this has 
been shown independently of the form of the functions ITK234 (note that we did not yet assume anisotropic part 
to be small; such an assumption will be used in the Appendix B to derive anisotropic corrections to the pair 
correlator and the Green function). 

Unfortunately, one cannot make such a definite statement for the correlator (13b) due to a logarithmic UV 
divergence of the collision integral. It is natural to suppose that the true form of the first angular harmonic of 
the fourth correlation function differs from the scale-invariant expression (13b) by a logarithmic factor as well 
as an isotropic solution [6,24]. To get the form of the logarithmic renormalization is left for future studies, 
here we are interesting in power dependencies only. 

2.4. High angular harmonics 

We have found the first angular harmonic of ,/1234. As will be shown in the next subsection, only even 
harmonics of ,/1234 give nonzero contribution into the velocity correlation function. Despite the fact that different 
angular harmonics should independently turn the rhs of (15) into zero, they arc not completely independent 
being related by another relations imposed on the correlation functions by the Euler equation. For example, in 
the framework of the Wyld diagram technique, all correlation functions can be expressed in terms of propagators 
(see Appendix A). Assuming scale invariance, one can find the scaling exponents of the propagators that give 
the first harmonics (13). Then, by using these propagators one can suggest the general form of the second and 
subsequent harmonics of J1234 (see Appendix B for details). The second angular harmonics of J1234 arc as 
follows for the inverse and direct cascades reslx,'ctively: 

82 JK34 OC L-2/3[k l  2/3 cos 201 uIK234 + k2 2/3 cos 202U2K,134 

-Fk3 2/3 cos 203U~,~24 "+" k4 2/3 cos 204u4K,~23 ] , ( I Sa) 

82 JW34 ~ A2[ k~! cos 201UlW234 -t- k~2 cos 202U2w134 + k~3 cos 203 u3wj*24 + ~4 cos 204U4W, l*23] . (lSb) 

Here U are some unknown functions of four arguments that have the same scaling properties as j~4) and are 
symmetric with respect to the last three arguments as well as above functions I. Those expressions correspond 
to the squared dimensionless parameters ~l and ~2 from (10). 

Now we should study how the second angular harmonic of the collision integral (15) turns into zero. There 
is no such a symmetry (as for the first harmonics) that enables one to factorize (15). Still, another remarkable 
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coincidence takes place. Let us consider, for instance, the contribution of (18a) into (15). This convergent (see 
Appendix C) contribution is proportional to the small parameter (kL)-2/3 (which stems from the prefactor in 
(18a)). The presence of finite L (i.e. a deviation from Kolmogorov values at k < L -1, e.g. the absence of the 
modes with k < L -1 ) gives another contribution to (15) since jK turns St into zero only at an infinite interval 
of k. That contribution from the distant region is small due to locality. Convergence investigation presented in 
Appendix C shows that for the second angular harmonic this damping contribution is proportional to exactly the 
same parameter (kL)-2/3. It is thus not necessary that the second harmonic (18a) turns the collision integral 
into zero (it actually does not) contrary to the first harmonic (for the first harmonic, 3J is proportional to 
( kL ) -1/3 while the damping contribution is proportional to ( kL )-4/3). The second angular harmonic (18a) 
thus appears in the inertial interval as a correction forced by a large-scale region (in this respect, this is 
similar to the approach of Leslie [4] to an anisotropic 3d turbulence). That correction can be found by solving 
the integral equation obtained from (15): 

Im f Tk123t~2jK238(k + kl - k2 - k3)d2kld2k2d2k3 + (kL)-2/3cp2/3k-8/3 cos 20k = O. (19) 

As it is usual for corrections caused by a remote region [8,32], the solution of (19) has additional logarithmic 
factors compared to the scale-invariant form (18a): one should replace there (kiL)-2/3 by (kiL)-2/3 ln- l (k iL) .  
This is because of a marginal (logarithmic) infrared divergence that appears in (19) after substituting (18a). 

The high (l > 2) angular harmonics of J1234 should be proportional to the - l / 3 t h  power of ~: 

8tJ K ~ (kL) -1/3 . (20) 

This provides for an infrared convergence of all harmonics of the collision integral (except marginal logarithmic 
situation for l = 4 - see Appendix C1 for details). The contributions of the angular harmonics with l > 2 into 
the collision integral are thus proportional to 

8/St K ~ (kL)-l/3k-8/3 , (21) 

and one can neglect all of them as giving corrections of the next orders with respect to the small parameter 
(kL) -1/3. Still, as we go deep into the inertial interval (decreasing k) the higher the angular harmonic the 
faster it grows while k decreases. 

The same analysis (up to unknown logarithmic factors) of the high angular corrections can be developed 
for the direct cascade using (kA) instead of (kL) -1/3. The results are different due to another convergence 
conditions. Here the A dependence of the high (l > 1) harmonics of the collision integral appears not only 
from the A dependence of J1234 (oc A t) but also from the divergence of the integral (cx A2-t). By using the 
results of Appendix C2 one can show that all the high (l > 1) angular harmonics give the same contributions 
in the collision integral: 

t~tStk 
cx (kA) 2 (22) 

Stk 

2.5. Anisotropic energy spectra 

What is accessible to experimental measurements is velocity (and its correlation functions) but not the 
correlation functions in the Clebsch variables. Expressing, for instance, the double velocity correlation function 
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F ( k ) 8 ( k  - q) --- ( v ( k ) u * ( q ) )  

= 8(k  - q) f(¢13¢~)J12,34a(k + kl - k3)a(kl + k2 - k3 - k4)d2kld2k2d2k3d2k4, (23) 

one can see that odd angular harmonics of ~J1234 give no contribution (this follows from the identity v(k)  = 
v * ( - k )  ). That is why we were looking for the second angular harmonic in the preceding section. Substituting 
the second harmonics of the fourth-order correlation functions (18) into the expression for the double velocity 
correlation function (23) one obtains the power-like parts of the first nontrivial anisotropic corrections to the 
energy spectra 

aFK(k) 
oc ( kL ) -2D cos( 20k) , (24a) 

FK(k) 

6Fw(k.__~) oc (kA)2cos(2Ok). (24b) 
Fw(k) 

As far as In-like corrections to (24) are concerned, they appear both from ~2J1234 (see previous subsection) 
and from marginal divergence of integral in the rhs of (23). Let us mention, by the way, that in the IPC case 
both of those In-factors are compensated. 

For the inverse cascade, the even angular harmonics with the number l > 2 should be proportional to 
L -t/3 due to the L-dependencies of b'/Ji234 in the integrand of (23) and the convergences of the respective 
integral. Therefore, in terms of the energy spectrum we see a structural instability: the higher the number of 
angular harmonic the higher the power of ( k L ) - l  that harmonic is proportional to and the faster the respective 
perturbation grows as k decreases. Such a structural angular instability also takes place for a weak acoustic 
turbulence [33]; as a result, a substantially anisotropic yet universal spectrum appears in the inertial interval 
[27,8]. 

For the direct cascade, all even angular harmonics with the number 1 > 2 should be proportional to A t due 
to the A-dependencies of 8tJ1234 in the integrand of (23). But those factors are partially compensated by the 
ultraviolet divergences A 2-t of the integral in the rhs of (23). Finally, one obtains 

8Fw(k) 
cx (L4)2fw(0k), (25) 

Fw(k)  

where fw  (x) is some even function. Thus, the key observation for the direct cascade is that, up to logarithmic 
factors, the shares of all angular harmonics of  the double velocity correlator grow into the inertial interval by 
the same law (25). If such corrections were set up (see below) then the steady spectrum in the inertial interval 
follows the angular shape of the pumping (and does not tend to a universal angular shape as for the inverse 
cascade). 

The results of the convergence investigation of the rhs of (23), which have been used in this Subsection, 
can be easily obtain in the same fashion as it is done in Appendix C for the collision integral, and we do not 
repeat it. 

2.6. Sign of the momentum flux and the initial value problem 

We have found the steady anisotropic corrections to the spectra in the inertial intervals. To conclude whether 
those corrections could be set up, we should study the matching with boundary conditions i.e. with pumping 
and damping. Not any steady solution of a homogeneous equation (without external action) is set up under the 
action of quite an arbitrary pumping. To ensure that the solution found is an asymptotic state (at t ---, oo), one 
should solve the initial value problem. This could be done similarly to the weak turbulence theory [8,25], so 
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that the criterion suggested by one of the present authors [26] is obtained: neutrally stable mode is set up in 
the inertial interval if it corresponds to the correct sign of the flux, i.e., it carries the flux from the pumping to 
the damping region. In the case of the IPC, this means that the solution (13a) should correspond to a negative 
momentum flux: 

k 

I~ -- Im / 2~cos Ok, kl dkl / Tk,12381jK1238( kl "-l-k1-k2-k3)d2kld2k2d2k3 < 0 .  

0 
(26a) 

Vice versa, in the case of the DPC the solution (13b), to be set up downscales, should correspond to a positive 
momentum flux: 

k 

RW = Im f 2~rcosOk, kt dk/ f Tk,12381jw1238(i~ q- kl - k2 - k3)d21cld21~2d2k3 > 0. 
o 

(26b) 

Thus the initial value problem is well defined, but the absence of a small parameter apparently makes a 
theoretical prediction yet impossible. Indeed, the present theory gives the possibility to find the scaling exponents 
but not the signs of the correlators (26) which are necessary to make definite predictions. We can only describe 
all possibilities: (i) R K < 0 - inverse cascade is structurally unstable, an anisotropic pump produces a spectrum 
anisotropic at large scales; (ii) R r > 0 - inverse cascade is stable, any anisotropic pumping acting in the interval 
of the cascade produces addition (24a) at scales smaller than those of the pump. For the direct cascade, the 
same is true after replacing K by W and small scales by large ones. Note that if both fluxes have "wrong" 
signs then both primary isotropic cascades are stable with respect to angular perturbations. 

If the fluxes had right signs so that both our anisotropic corrections were formed, one can show that the 
process of formation obeys the same law as that of formation of isotropic spectra [25,36]: self-decelerating 
upscales and self-accelerating downscales (the characteristic interaction times decrease with k). 

3. Conclusions 

The possibility of a structural instability with respect to angular perturbations is predicted for isotropic 
spectra of 2d turbulence. It is shown that the weakly anisotropic steady spectra are getting more anisotropic 
while passing deep into the inertial intervals. To make a final conclusion on which of those anisotropic spectra 
could be excited by an anisotropic pump further studies are necessary. 
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Appendix A. Diagrammatic technique 

21 

A.I. The diagonal diagrammatic technique in Clebsch variables 

The natural scheme to develop perturbation theory for a non-equilibrium system with a strong interaction 
is the diagrammatic technique of the type first suggested by Wyld [34] for hydrodynamic turbulence. This 
technique was later generalized by Martin, Siggia and Rose [35] who demonstrated that it may be used for 
investigating the nonlinear dynamics of any condensed matter system. Then Zakharov and Uvov [ 19] extended 
the Wyld technique to the statistical description of hydrodynamics in the Clebsch variables. In fact this technique 
is also a classical limit of the Keldysh technique [37] which is applicable to any physical system described by 
interacting Fermi and Bose fields. 

The natural objects in the Wyld diagrammatic technique are the dressed propagators, which are the Green's 
function G(k,  to) and correlator n(k,  ca). The Green's function is defined as the average response of the Clebsch 
field a(x ,  t) to a vanishingly small external "force" f ( x ,  t) which should be added to the right side of the 
equation of motion (3). In ca-representation 

I 8a(k'ca) > 
G(k,  c a ) 8 ( k - k ' ) 8 ( c a - c a ' )  = 8f(k ' ,ca ')  " (A.1) 

As a consequence of the causality principle the function G(k,  ca) has to be analytic in the upper half of ca-plane. 
The correlator n(k,  ca) is the second correlation function of the Clebsch field a(k,  t). In ca-representation 

n(k,  ca)8(k - k')8(ca - ca') = (a(k ,  ca)a*(k', ca')) . (A.2) 

By calling this technique diagonal we emphasize the presence of momentum &function in the definitions 
(A.1),(A.2). Using the Wyld technique one may derive the system of equations for the dressed propagators 
[34,19], known as the Dyson-Wyld equations: 

1 
G( k, ca ) = , (A.3) 

ca - X(k ,  ca) 

n(k ,  to) ---IG(k, ca)l 2 [4~0(k, ca) + ¢~(k, ca)] . (A.4) 

Here 4~0(k, ca) is the correlator of the external force. The mass operators X(k ,  ca) and 4~(k, ca) are the self- 
energy and intrinsic noise functions respectively. These are given by infinite series of one-particle irreducible 
terms (diagrams): 

.~ ---- 21 -~'- 2 2  "4- 2 3  + • • • ,  

= ~2 -/-~3 + " - .  (A.5) 

In these expressions ,Ym is a functional of m vertices T, ( m -  1) Green's functions G(kj ,  toy), and m correlators 
n(ky, toj); @m is a functional o fm vertices, ( m +  1) correlators and m -  1 Green's functions. 

To reproduce the perturbation series in compact form it is convenient to use graphic notations for the objects 
appearing in the expansion. A wavy line represents the field a, a straight line represents 8/8 f .  In accordance 
with (A.1),(A.2) the Green's function G has one wavy section and one straight section, while the double 
correlator has two wavy sections. There is only one type of vertex T, which is the junction of one straight and 
three wavy lines. The momentum and frequency conservation laws k + kl = k2 + k3 and ca + ca1 = ca2 + 0)3 
are implied. The properties and the rules of "reading" of diagrams are given, for example, in [ 19]. They may 
be recollected by comparing the diagrams of Fig. 1 for the simultaneous fourth-order correlation function with 
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k 2 k 2 k 2 k 2 

1 ~ 3  1 ~ 3  1 ~ 3  1 ~  3 a b c d 
Fig. 1. Graphics representation of the perturbation series. 

the following analytical expressions: 

Jkl,23 = ½T( k, k l ;  k2 ,  k3 ) f dtodtoldto2d¢03¢~( o) + to I o) 2 o J3)  

X [nqnln2Ga + nqnlG2n3 + nqG~n2n3 + Gqnln2n3] . (A.6) 

Here index q means (k,to), j means kj,toj and we used shorthand notations nj and Gj which represent 
n(kj ,  wi) and G(k3,wi) .  

A.2. The quasi-Lagrangian diagrammatic technique in Clebsch variables 

The main problem limiting a use of the diagonal technique is strong power-like divergences of integrals (for 
example collision integral (15) both in the IPC and DPC cases. According to Kraiehnan [38], divergence is 
caused by the strong sweeping of small eddies by large ones. A way to formally exclude such divergence is 
to use the quasi-Lagrangian (QL) Clebseh fields [20]. Here, we briefly enumerate some properties of QL 
technique without going into details which can be found in the review [20]. QL fields relate to the initial 
Clebsch fields by the formula 

tO 

(A.7) 

where the QL-velocity u(r,  ro, to, ¢) is expressed in the reference point r0 as follows (see (7)): 

u(ro, ro, to, ~') = -~ 012bl b 2 exp(i(kl - k2)ro)d2kld2k2, 

bi = b(ro, ki, to,'r). 

The equation of motion for the QL Clebsch fields may be derived by substituting (A.7) into (3). This equation 
differs from the Eq. (3) in the replacement of the vertex T(k l , k2 ;k3 ,k4 )8 (k l  + k2 - k3 - k4) by the QL 
vertex 

W(ro; k, kl, k2, k3) = (2qr) -3/2k[l~13{8(k + kl - k2 - k3) - 8(k - k2) exp[i(kl - k3)ro] } 

+~b12{8(k + kl - k2 - k3) - 8(k - k3) exp[i(kl - k2)ro] }]. (A.8) 

The dressed Green-function (A.1) and propagator (A.2) in QL technique must be rewritten in the form 
non-diagonal with respect to the wavevector 

/ 8a(ro; k, to) \ 
c(r0; k, k', \ 
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n(r0; k, k',  o~) 8(oJ - o/)  = {a(ro; k, ¢o)a*(ro; k', o / ) ) .  (A.9) 

Those three properties (the presence of the reference point, the new vertex and nondiagonality) lead to 
crucial changes in diagram technique. The graphical notations, introduced for diagonal technique, may be 
used nevertheless for QL technique but, of course, with another "reading" rules. The first four diagrams in 
QL-technique for the simultaneous fourth-order correlation function (Fig. 1) read as follows: 

Jro;kl,23¢$( k + kl - k2 - k3) 

1/d2ktd2k~d2~2d2~3doTdfoldo)2do)3~(o)-~-O)l 0)2 0)3) W(70, / ! ! t --  k2, k3) = - k , k l ;  

x [nk~,nll,n22,G3y + nk~,nll,G22,n33, + n~c,G~l,n22,n33, + G~enll,n22,n33,], (A.10) 

where shorthand notation nii, represents n(ro; ki, k~, oJi). It is important to emphasize that simultaneous cor- 
relation functions in QL Clebsch fields coincide with the same functions in initial Clebsch fields and do not 
depend of ro. This allows us to put, without lost of generality, ro = 0 in the rhs of the expression (A.10), as 
well as in all expressions for one-time correlators. Besides, it allows to connect the QL propagator (A.9) with 
the "occupation number" n(k)  (9) 

n ( k ) 6 ( k  - k')  = f n(ro; k, k', oJ)doJ. (A.11) 
J 

A p p e n d i x  B .  A n i s o t r o p i c  p r o p a g a t o r s  

Here, in the framework of the diagram technique in Clebsch variables (see Appendix A), we will specify, 
following the work [5], scaling exponents of anisotropic propagators that give the first harmonics (13). 

Assuming weak anisotropy we expand the propagators (A.I,A.2) in the Fourier series 

o o  

n(k ,  oJ) = E cos(e0) (kA)Ztne(k, oJ), 
l=o 
o o  

G( k, o~ ) = E cos(£0) (kA)ZtGt(k, oJ ) . (B.1) 
t=o 

Here A is the energy containing scale L for inverse cascade and the dissipationscale A for direct cascade, ze 
are the scaling exponents for the dimensionless anisotropic corrections proportional to cos(10), zo = 0. 

Considering the different-time propagators G(k,  w) and n(k,  ~o) one necessarily finds infrared divergences 
of integrals even in the direct interaction approximation. The reason for this is the sweeping effect which, 
however, does not contribute to the results for the simultaneous correlator if the entire perturbation series is 
considered. The procedure of eliminating the sweeping in each order of perturbation theory is rather cumbersome 
[20]. Fortunately, the scaling properties of the vertex in the Lagrangian variables are the same as those of 
T12348(kl + k2 - k3 - k4) so that the exponents zt can be found here without going into those complications. 
Let us substitute the expansions (B.1) into the Dyson-Wyld equations (A.3),(A.4). Thus we can see that zt 
are indeed the same for both n and G and that nt(k, ~o) and Gt(k, o~) should have the same scaling properties 
as n(k,o~) and G(k,o~), respectively. 

Let us consider the terms with ~ = 1. Substituting 

n(k,¢o) =n(k,  oJ) + (kA)Zlnl(k,w) cos0~, 
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G( k, oJ) =G( k, to) + ( kA)Z'Gl ( k, eo) cosOk (B.2) 

into Eq. (A.6), one can see that in the linear approximation with respect to nl and Gl, the anisotropic corrections 
to the fourth-order correlation functions have the forms (13a) and (13b) with some analytical expression for 
11,234 if and only if Zl = - 1 / 3  and Zl = 1 for inverse and direct cascade correspondingly (for the direct cascade, 
one drops logarithmic corrections). This is thus the justification of the formulas (12) previously obtained from 
dimensional analysis. Note, that corrections linear in cos Ok tO the fourth correlator have the form (13) because 
of symmetry. Therefore it is clear that nl and G1 do have this form in each order of perturbation theory (which 
also can be directly proved by the simple calculation of powers at any order and again without logarithmic 
corrections for the DPC solution). The only difference between considerations of the whole series and the 
direct interaction approximation (A.6) would be the form of analytical expressions for 11,234. Since (13) has 
been shown to be a steady solution independently of the form of 11,234, then we come to the statement, that the 
anisotropic corrections (B.2) with zi = - 1 / 3 ( 1 )  are solutions (power-like parts of solutions) of the uniform 
linearized equations for the double correlators in each order of perturbation theory. 

If one substitutes (B.2) into (A.4) and takes into account terms quadratic with respect to the anisotropic 
corrections, one obtains the exponents for the second angular harmonics: z K = - 2 / 3  and z w = 2. Subsequent 
harmonics can be shown to have z~ = - e / 3  and z w = £ for IPC and DPC, respectively. 

Substituting the first two terms of the propagator expansions (B.I) into (B.2), and restricting ourselves to 
the terms linear with respect to the second harmonics and quadratic with respect to the first one, we get the 
second angular harmonics of the fourth correlators (without logarithmic correction for the DPC case) in the 
form (18). 

Appendix C. Convergence of the collision integral with the animtropic corrections 

To investigate the convergence of the collision integral (15) one has to examine its dependencies on large 
and small scales (L --* c¢, A ~ 0). To do this, one can combine the QL approach in Clebsch variables 
(Appendix A) with the method of getting the asymptotics of correlators by sorting diagrams [ 10,39]. Another 
point that powerfully simplifies the convergence analyses is that the diagrams of different orders have the same 
asymptotics [20]. For the investigation of IR and UV asymptotics of (15), it is thus enough to consider only 
the first four diagrams of the simultaneous fourth-order correlation function (A.10) (see also Fig. 1). Let 
us emphasize that locality analysis employs another small parameter (the ratio of wavenumbers) in addition 
to a weakness of anisotropy, which makes it possible to get a consistent result without using uncontrollable 
approximations. 

C.1. Analysis of the IR convergence 

The main idea that enables one to find the asymptoties of any high-order correlators as some wavevectors go 
to zero is as follows: in the framework of diagram technique one can express any functions in terms of series 
containing pair correlators, Green functions and their small anisotropic corrections. As the scaling exponent of 
the pair correlator is positive, the main IR contributions into the Ith harmonic of the collision integral stem 
from the lth harmonics of pair correlators of small wavevectors but not from the Ith harmonics of Green 
functions. Loosely speaking, the pair correlator grows faster than the Green function as k -* 0. For the IPC 
case the exponents increase with the harmonic numbers, so the main contributions stem from the high-order 
harmonics of pair correlators of small wavevectors. Vice versa, for the DPC case the exponents decrease with 
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the harmonic numbers, so the main contributions stem from the zero order harmonic of the pair correlators of 
small wavevectors. It means, in particular, that in the DPC case all higher harmonics of the collision integral 
converge logarithmically toward small k just as the zero one [6]. So, in the rest part of this Subsection one 
has to do only with the IPC case. The presence of the wavevector's 8-function in the integrand of Stk allows 
only one or two from the dummy wavevectors to be much smaller than k. Thus, to solve the problem we have 
to examine three cases (see Fig. 1): (a) only one from the wavevectors is small (for example kl << k, k2,k3 
when only (a) , (b) ,  and (c) diagrams are essential); (b) two from the wavevectors are small, so that one of 
them is "going in" but another one is "going out" (for example kl, k2 << k, k3 when only (a) and (c) diagrams 
are essential); (c)two from the wavevectors are small, so that both of them are "going out" (for example 
k3, k2 << k, kl when only (a) and (d) diagrams are essential). 

(a) Only one from the wavevectors is small. The main contribution into the integral (A.10) over dk~ldtol 
stems from the region k~ ~_ kz, to1 ~- k21/3. On the other hand, the main contribution into the integral (A.10) 

over dtodto2dto3 stems from the region to2 ~- to3 ~ to _~ k ~-/3 >> k~/3 ~_ to1. It allows us to neglect the value 
of tol in the argument of the wavevector's &function in (A.10). As a result, only the function n(k l ,  k'l, tol ) 
depends on tom. Let us integrate the essential part of (A.10) over dtol with the help of (A. 1 1 ) and further over 
k~. The expressions for T (5) and W (A.8) vertices at the leading order in the small parameter k l / k  << 1 are 

Wkm,23 ~ TtL238(k + kl - k2 - k3) cx (kin ,~'3t + ~b2t)B(k - k2 - k3). (C.1) 

So, we are ready to make a naive estimation of the l-st angular harmonic 

b'tSt(k) cx / d'  kt . . . T k l , 2 3 I m S I  J k l , 2 3  o (  [ d2 kl . . . TkL2, Wk, m.2,ySn,, (C.2) 

1/L l/Z 

where the points mark nonessential via the integration over kl parts of the integrand. This naive estimation is 
not trivial only if l is equal to 0 or 2, and vanishes due to the angle integration for all other l 

2~. 

cos((1 - ~bl ) cos(( l  - (~)  cos(l(l)d(1 = 0, (C.3) 

0 

where (I is the angle between kl and the momentum flux R, ~bl is the angle between R and the vector 
~3t + ~2t, ~2 is the angle between R and the vector @3,~, + ¢'2,k,. The second harmonic stands out from all 
the others since the asymptotics of two vertices, T and W, contain cosines. To test convergences of another 
harmonics of Stt we must expand the integrand in the series with respect to the small wavevector and frequency. 
The to-expansion does not give us a nontrivial result because no new dependencies on the angle (1 appear. As 
far as the first angular harmonic of the collision integral is concerned, already the first order correction over ki 
gives nontrivial result. To estimate a convergence of some higher (l > 2) harmonic let us note that the integral 
fo2'r f ( ( l ) c o s ( l ( l ) d ( l  is not trivial only if the lth harmonic in the angular expansion of f((m) exists (here 
some new angular dependence of the integrand on the angle (1, appeared from the kl expansion, suppresses 
in some function f ) .  But those nontrivial terms come for the first time only from the (l - 2) order of  the 
integrand's expansion over kl. So, the angular harmonics of the collision integral converge at L --o cx~ as 

L 4/3 if  l = 1, 
b/St oc L -2(/-2)  if I > 1. (C.4) 

In particular, one obtain that the second angular harmonic of the collision integral converges logarithmically at 
small k. 
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We studied here only the case, when a small wavevector is "going in", but it is easy to see, that the case 
when a small waveveetor is "going out" gives the same result. 

(b) Two from the wavevectors are small, so that one of them is "going in" but another one is "going out". 
kl, k2 << k, k3, so only (a) and (c) diagrams are essential. By the same way as it was done in the previous 
subsection, one can fulfill integration over 071,2,3 and k~,2, 3. The vertices in the leading order in the small 
parameters kl/k, k2/k << 1 are 

[ ( k " k ) ( k 2 ' k ) ] 8 ( k - k 3 ) ,  (C.5) Wkl,23 O ( ( k l , k 2 )  - k2 

Tkl,23 (x (k,1~¢12). (C.6) 

The first contribution from the/ th  harmonic of the four-point correlator ~/Jkl,23 to ~/St, 

i o°/(nln2) ( (k l ,  k2) - 
(k l ,k ' ) (k2 ,k  t) 

Inl~/Jkl,23 k,2 ) 

x [n(k, k'; 07)ImG(k, k'; w) +ImG* (k, k'; 07)n(k, k') ]d2k'd07, (C.7) 

is equal to zero due to the cancellation of two terms in the square brackets. So, one has to take into account 
terms of the next order in small wavevectors and frequencies. Since 071,2 << kl,2, one obtains for 8tSt 

8/St ( l )  oc 8(n(kl,Wl)n(k2,072)) (k l ,k2)  - k, 2 ) (k,1~12)(071 - O72) 

x[n(k,k~;07) OImG(k,k ' ;07)  + ImG*(k, kl;07) :----~n(k, kl;07) ]d2kld2k2d2ktd07d071dw2. (C.8) 

This term again is equal to zero, now due to antisymmetry of the integrand with respect to the interchange: 
kl *--, k2,071 ~ 072. Moreover, one sees that nontrivial contribution to 8St can arrive only from a calculation 
of the vertex asymmetry. The calculation of the first asymmetric correction to the W vertex gives a nontrivial 
result for the second and fourth harmonics of the collision integral and zero for another ones due to the angle 
integrations. If one eliminates the cancellations in (C.7) by expanding the integrand over small wavevectors 
(not over small frequencies as it was done in (C.8)) and takes into account the first asymmetric correction to 
the vertices one obtain nontrivial results for the first and third harmonics. Following the above line of arguments 
(see the previous a-case), we conclude that the angle integrations in some high lth harmonic (l > 4) of the 
collision integral may he nontrivial only for terms in the integrand containing a large enough (greater than l) 
power of ki,2. Thus, we get the estimations 

L /3-7/3 if l = 1,3,  

o~St oc L t/3-2 if l = 2 ,4 ,  (C.9) 
L -2l/3+s/3 if I > 4,  

that show the power-like convergences of all harmonics of the collision integral. 

(c) Two from the wavevectors are small and both of them are "going out". k3, k2 << k, kl so only (a) and 
(d) diagrams are essential. As in the case (a), one can fulfill integration over 071.2.3 and k ~ The vertices in 1,2,3" 
the leading order of the small parameters k2/k, ka/k << 1 are as follows: 

Wkl,23 ~ Tkl,238(k + kl) oc (k2k3)8(k + kl) . (C.10) 

The naive estimation of the/ th  angular harmonic of the collision integral 
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t~ t St oc f ~(n3n2)(k2k3):d2k2d2k3 (C.11) 
, /  

I/L 

gives a nontrivial result for I = 0, 4 and zero due to the angle integrations for all other l. To find the leading L 
dependences for l ~ 0, 4 we must expand the integrand up to the next terms in kl, k2. One thus obtains 

L1/3-7/3 if  1 = 1,3, 

8tSt c< L -s/3 if  l = 2, (C.12) 
L -2l/3+s/3 if  I > 3. 

The angular harmonics of the collision integral converge logarithmically for 1 = 4 and power-like for all other l. 

C.2. Analysis of the UV convergence 

Since the scaling exponent of the pair correlator is positive, then the main UV contributions into the lth 
harmonic of  the collision integral stem from the lth harmonics of the Green functions of  large wavevectors. 
For the direct cascade, the exponent decreases with the harmonic number so that the main contributions stem 
from the high-order harmonics of propagators of large wavevectors. For the inverse cascade, the exponents 
increase with the harmonic numbers so that the main contributions stem from the zero order harmonics of 
propagators of large wavevectors. This means, in particular, that in the case of IPC all the harmonics of the 
collision integral have the same convergence reserve (interval of exponents providing convergence) as the zero 
one [20]. Therefore, in the rest part of this Subsection we have to do only with the DPC case. Now, only two 
or three wavevectors in .]1234 may be large. We thus have to examine three cases similarly to the IR case. 

(a) Two from the wavevectors are large, so that one of them is "going in" but another one is "going 
out". kl, k2 >> k, k3 and only (c) and (d) diagrams are essential. Due to the presence of small parameters 
k/kl, k/k2 << 1 and also due to the smallness of the respective frequencies (that was proved to be true for the 

I I DPC case [24]) one can fulfill integration over to, oJ2,to3 and kt,k2,k3 . The asymptotics of vertices are as 
follows: 

Wkl,23 ~x I ( k ,  k3) - ( ( k l ' k ) ( k l ' k3 )  l S(kl - k2) , (C.13) 

Tkl,23 oc (kl ,~b~).  (C.14) 

The leading contribution from the lth angular harmonic of the fourth correlator, 8tJkL23 to 8tSt 

l/a 

ImS/Jkl,23 oc / 8/[n(kl, k~; to1 )ImG(kl, k'i; ~1 ) "4- IrnG*(kl, k~; (I) 1 )n(kl,  k'l ) ] 

is equal to zero due to the cancellation of  two terms in the square brackets. So, one has to take into account 
terms of the next order in the small wavevectors and frequencies. Since o~k,3 << k, k3, one obtains 

1/A 

b'/St cx f n(k, to)n(k3,w3)<w-to3) ( (k ,  k 3 ) -  
(k, k' )<k3,1el) 
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xSl [n(kl ,k ' l ; tol)c~bllmG(kl ,kt l; tol)  + ImG*(kl,kll;tol) 3--~-in(kl,k~l)] 

x d2 k l d2 k3d2 k~ dtodtol dto3 . (C.16) 

This is zero after integration over to, to3. Expanding the expression in the square brackets at the rhs of  (C.15) 
in the small wavevectors, one obtains a nontrivial result for all angular harmonics, 

~St cx A 2-t , (C.17) 

This shows the power-like divergence for l > 2, convergence for l = 1 and marginal (logarithmic) divergence 

for l = 2 .  

(b) Two from the wavevectors are large, so that both of  them are "going out". k2, k3 >> k, kl and only (b)  
and (c)  diagrams are essential. In the leading order in the small parameters k/k2,3 << 1 one can fulfill the 

integration over to, tol,3 and k I, ktl,3 . The vertices a r e  Wkl,23 ~, Tkl,238(k2 + k3) oc (kk l )8 (k2  + k3).  
Already the naive estimation of  t he / t h  angular harmonic of  the collision integral gives a nontrivial result 

I /a 

8 tSt (k)  cx / ...St (ImG( k2, k[, to2)n( -k2 ,  - k [ ,  - to2)  

+ I m G (  - k 2 ,  i i - k  2 , - t o2 )  n(k2,  k 2, to2) )d2k2d2~dto2 oc A 2-t, (C.18) 

which coincides with the previous case (C.17).  

(c) Three from the wavevectors are large kl,2.3 >> k and only (b ) ,  (c)  and (d)  diagrams are essential. 
Here one integrates the leading order in the small parameters k/kl.2,3 << 1 over to and k ~. The vertices are 

Wkl,23 ~'  Tkl,238(kl - k2 - k3) ~x (k ,  ~b31 -b 1~21)~(kl - k2 - k3). 
The naive estimation of  the lth angular harmonic of  the collision integral gives the same nontrivial result as 

in both a- and b-cases 

1/A 

o~st 0< / (k,  ¢'31 + 4"21) (k, ¢'3,1, + ¢,2,~,)8(k~ - k2 - k3)8(k~ - k~ - k~) 

x f f [ n ( k l  ' , k l ,  t o l ) ImG(k2 ,  k~, to2)n(k3, kl3, <o3) + n(kl ,  ' ' ' k I , tol)n(k2, k 2, to2) ImG(k3 ,  k 3 , to3) 
2 2 2 2 l  21  2 i + I m G ( k l ,  k~, to l )n(k2 ,  k~, to2)n(k3, k~, to3) ]d  kid k2d k3d kid k2d k3dtodtoldto2dto3 

~x A 2-t.  (C.19) 
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